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§ 1. INTRODUCTION

1.1. Our presentation focuses on the notion of

RANDOMNESS

or, more exactly, on the question

how one can define formally what is

INDIVIDUAL RANDOM SEQUENCE.
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In the paper “On logical foundation of Probability Theory” (Fourth

USSR–Japan Symposium, 1982) A. N. Kolmogorov wrote:

In everyday language we call RANDOM these phenomena

where we cannot find a REGULARITY allowing us to

predict precisely their results. Generally speaking, there is

no ground to believe that a random phenomenon should

possess any definitive probability. Therefore, we should have

distinguished between

proper randomness

(as absence of any regularity)

and

stochastic randomness

(which is the subject of the probability theory).
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Let us take, for example, the finite Bernoulli sequence

(I10) : 01 1 1010 010

or the infinite Bernoulli sequence

(I00) : 01 1 1010 0101 1 . . . = (I10) 1 1 . . . ,

which are formed by “fair” tossing of a regular coin (1 = Head,

0 = Tail).

Having get these sequences, we shall be inclined to qualify

them as

“RANDOM” ,

since they seem to display no regularity in consecution of

zeroes and units.
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But if we get any of the sequences

(II10) : 1111111111, which consists of ten units,

(III10) : 1010101010, which consists of alternating

units and zeroes,

then our intuition will hardly allow us to reckon them as “random”.

However, from the probabilistic point of view, each of the sequences

(I10), (II10) and (III10)

has the same probability (1/2)10 .

(We consider a symmetric Bernoulli scheme, where it is assumed

that at each step the coin is tossed independently and the probabi-

lities of getting 1 or 0 are equal to 1/2.)
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Our aim is to review in a compact form the main approaches—which

have been proposed by now—to the following problem:

Which sequence can be naturally named “random”?

The ideal result would be to “split” the set of all binary sequences

into two sets, random and nonrandom sequences.

For what follows, it is important to emphasize again that

the sequences that we consider are not arbitrary but

those obtained from probabilistic experiments which are

described by the symmetric Bernoulli scheme.

Thus, we start with an assumption that we are in the framework

of the Kolmogorov axiomatics, which assumes given a measurable

space of outcomes (Ω,F) with certain probability measure P.
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A priori it would be natural to think that

the problem of “splitting” sequences into

“random” and “nonrandom”

(within one or another definition of randomness which would conform

to our informal intuition)

can be solved in the framework of

the theory of probability

However, the above example of sequences (I10), (II10) and (III10),

which have the same probability, shows that it is scarcely possible.
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One cannot say that probability theory is not at all able to give

answers to the questions of “splitting”. The actual situation is that

the Kolmogorov axiomatics of probability theory is designed in a way

which allows one to establish one or another property only P-a.s. In

other words, the theory of probability answers the question:

Is a certain property fulfilled?

only for “overwhelming majority” of objects (for example, binary

sequences), without determining which concrete individual objects

belong to this “majority”.
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It turned out that solution of the problem whether a concrete

individual object is “random” or “nonrandom” can be helped by

addressing to a discipline, which seems to be very distant from

the theory of probability, namely, the theory of algorithms.

Here we should give a very important warning: In principle, it is

hardly possible to draw a clear-cut distinction between “randomness”

and “nonrandomness” for finite sequences.

As concerns the case of infinite sequences, we will see that the

theory of algorithms provides the reasonable definitions of an infinite

random sequence which fit well our intuition.
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It is well known that in Probability Theory for

infinite sequences

there are many results about the validity of the “overwhelming

majority” properties formulated as properties fulfilled

almost surely.

For example, consider the Bernoulli probability space:

(Ω,F ,P) ≡
(

{−1,1}∞, B({−1,1}∞), PBern

)

.

Set, for x = (x1, x2, . . .)

Sn(x) = x1 + · · · + xn, n ≥ 1.
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The classical results of Probability Theory claim that for the random

walk (Sn(x))n≥1 the following properties hold PBern-almost surely:

I lim
n→∞

Sn(x)

n
= 0 (strong law of large numbers);

I lim sup
n→∞

Sn(x)√
n

= +∞, lim inf
n→∞

Sn(x)√
n

= −∞;

I
Sn(x)√
n logn

→ 0, n→ ∞;

I lim sup
n

Sn(x)√
2n log logn

= 1 (law of the iterated logarithm).

It is remarkable that (V. G. Vovk, A. Shen)

the algorithmic approach to the validity of the formulated

properties allows one to describe the individual sequences

x = (x1, x2, . . .) ∈ Ω for which these statements do hold.
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1.2. Richard von Mises was the first to consider (in 1919) the notion

‘infinite random sequence’.

His intention was in fact to build the probability theory assuming

the notion of ‘infinite random sequence’ as a basis.

Note that the axiomatics of probability theory which was proposed

by Kolmogorov (1933) and is generally accepted nowadays is based

on a different object, namely,

probability distribution.
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In the very beginning (§ 2) of his monograph “Grundbegriffe der

Wahrscheinlichkeitsrechnung” (Springer, Berlin, 1933) Kolmogorov,

emphasizing the importance of the von Mises approach for the

probability theory, wrote:

In establishing the premises necessary for the applicability

of the theory of probability to the world of actual events,

the author has used, in large measure, the work von Mises,

cf., in particular: [R. von Mises. Vorlesungen aus dem Gebiete

der angewiesen Mathematik. Bd. 1: Wahrscheinlichkeitsrechnung.

Leipzig u. Wien, Fr. Deuticke, 1931], p. 21–27, Section “Das

Verhältnis der Theorie zur Erfahrungswelt”).
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Von Mises did not give an accurate formal mathematical definition

of the notion ‘random sequence’, contenting himself with reference

to intuitive ideas of

• “irregularity of their construction”,

• “unpredictability of their subsequent values by the

preceding ones”,

• impossibility to construct winning strategies over the

sequences produced in casino.

However, the idea itself to define a “random” sequence generated a

large cycle of works which developed various natural approaches to

definition of the concept of “randomness”.
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As we already mentioned, all these approaches are based on a

concept of ‘algorithms’, which seems to be alien to the theory of

probability. However, it is the theory of algorithms that gave the

possibility to specialize the uncertain von Mises notion of ‘admissible

selection rules’ (‘admissible place selection’) that he used for defini-

tion of the notion ‘infinite random sequence’.

By von Mises, an admissible place selection is a procedure for se-

lecting a subsequence of a given sequence x = (x1, x2, . . .) in such a

way that the decision to select a term xn does not depend on the

value xn.

Now one can distinguish four main approaches to the definition of

the concept of ‘infinite random sequence’. These approaches are

based on and determined by the following four properties that our

intuition demands from sequences which we call ‘random’:
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STABILITY of FREQUENCIES

or stochasticity

Mises, Wald

Church, Kolmogorov

Loveland

TYPICALITY

(belonging to a set with

effective measure 1)

Martin-Löf

Levin

Schnorr

COMPLEX STRUCTURE,

or CHAOTICITY

Kolmogorov

Levin

Schnorr

NONPREDICTABILITY Ville, Uspensky
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After V. A. Uspensky ∗ , each of these properties represents

“its own algoritmic physiognomy of randomness, and

each of them can—with more or less ground—pretend

to a role of an accurate mathematical definition of

the concept of randomness”.

∗
V. A. Uspensky, Four algorithmic physiognomies of randomness (Russian),
Matematicheskoe prosveshchenie, 10, MCCME, Moscow, 2006, 71–108.
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§ 2. TOWARDS the HISTORY of COMING-TO-BE of

PROBABILITY THEORY

To clarify the questions connected with notions of ‘probability’ and

‘randomness’, it is worth recalling now the main stages of the

probability theory coming-to-be as a mathematical discipline.

Both intuitive ideas on randomness and beginnings of reasoning of

different kinds about possible chances (in religious practice, settle-

ment of controversies, predictions, . . .) trace their roots back to

ancient days when the manifestations of randomness were believed

to be divine apparition which is beyond the reach of a human mind.
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Archeological finds say about existence of “random tools”, namely

hexahedral dice (astragalus ∗), already in ancient times ∗∗.

In the Renaissance (end of the XIV century – beginning of the

XVII century), we find traces of more or less serious discussions

(generally, of a philosophical character) on “probabilistic” reasoning:

Fra Luca Pacioli (1445–1517(?))

Celio Calcagnini (1479–1541)

Nicola Fontana Tartaglea (1500–1557)

∗ astragalus is a heel bone of Artiodactyla; it has such a form that, when
tossed up, it can fall on one of four (different) sides, since the other two
have a rounded form.

∗∗
in the period of the First Dynasty in Egypt (c. 3500 before Christ), then
in Ancient Greece and Ancient Rome, where they were used in primitive
games.
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One of the first to analyze mathematically the gaming chances

was

Gerolamo CARDANO (1501–1576)

who solved the cubic equation and is broadly known as inventor of

“cardan shaft”. In his manuscript (c. 1525)—published only in 1663

under the title Liber de Ludo Aleæ (Book on games of chance)—

he launched an idea of combinations which opened a convenient

way of describing the set of all outcomes and the set of favorable

outcomes.
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The period briefly portrayed above is commonly referred to as

prehistory of the theory of probability. When studying the questions

of the history of probability theory one usually distinguish the fol-

lowing five stages:

PREHISTORY

1st PERIOD (XVII century – beginning of the XVIII century)

2nd PERIOD (XVIII century – beginning of the XIX century)

3rd PERIOD (the latter half of the XIX century)

4th PERIOD (beginning and middle of the XX century)
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FIRST PERIOD (XVII century – beginning of the XVIII century)

This period is commonly associated with the birth of “calculus of

probabilities”, and its starting point is fastened with the correspond-

ence (1654) between Blaise Pascal (1623–1662) and Pierre de

Fermat (1601–1665).

In 1657, Christianus Huygens (1629–1695) publishes his book

De Ratiociniis in Aleæ Ludo (“Games of chance”).

This book was received warmly by contemporary mathematicians

and remained—for nearly half a century—a unique introduction to

the theory of probability.
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A central figure of the considered period is certainly represented by

JACOB (Jakob, James, Jacques) BERNOULLI (1654–1705)

who is credited to introduce into the science the notion ‘probability

of an event’. J. Bernoulli was the first

• to consider infinite sequences of iterated trials and

• to put a question about the limiting behavior of the

frequencies of appearing of one or another event in these

trials, which was a cardinally new (“nonfinitistic”) idea in

probabilistic considerations, which were restricted at that

time to methods of the elementary arithmetics and simplest

techniques of combinatorics; this setup led Bernoulli to the

law of large numbers,

which bears now his name (“Ars Conjectandi”, 1713). 23



SECOND PERIOD (XVIII century – beginning of the XIX century)

This period is tied up with such names as

Pierre-Rémond de Montmort (1678–1719)

Abraham De Moivre (1667–1754)

Thomas Bayes (1702–1761)

Pierre Simon de Laplace (1749–1827)

Carl Friedrich Gauss (1777–1855)

Siméon Denis Poisson (1781–1840)
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In his book Essai d’Analyse sur les Jeux de Hasard (Essay of Analysis

in Games of Chance), Montmort (1708) pays a special attention

to development of methods of calculation in various games.

In the books Doctrine of Chances (1718) and Miscellanea Analytica

Supplementum (1730) Moivre gives definitions of such notions as

• independence of events,

• expectation,

• conditional probability.

The name of Moivre is mostly reputed in connection with the normal

approximation of the binomial distribution, which—at the suggestion

of George Pólya (1920)—is called now a

CENTRAL LIMIT THEOREM .
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A work by T. Bayes “An Essay Towards Solving a Problem in the

Doctrine of Chances” (1763) provided

BAYES’ FORMULA ,

a rule of conversion of a priori probabilities into a posteriori proba-

bilities after a given event.

On the heels of J. Bernoulli, Laplace held to the “classical” definition

of probability (in the case of finitely many possible outcomes with

equal probabilities).
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However, “nonclassical” probability arose as early as in this period.

For example, in the Bayes considerations a posteriori probabilities

can be nonequal.

Nevertheless, the objects known now as Gaussian law and Poisson’s

law were considered only as approximations and their essence as

probability distributions (in the modern interpretation of this term)

was not realized yet.

The aforesaid shows that the framework of the “classical” (finitistic)

probability theory began to restrict severely its development. In this

period, probability theory failed abstract mathematical constructions

and it was qualified just as applied mathematics.
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THIRD PERIOD (the latter half of the XIX century)

The main locality where general problems of probability theory were

developed at that time was St.-PETERSBOURG, and an essential

contribution in extension and deepening of the whole system of

probability was made by

P. L. Chebyshev (1821–1894)

A. A. Markov (1856–1922)

A. M. Lyapunov (1857–1918)

It is to their works that one owes

the refusal to restrict oneself within the case of
“classical” probability.
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CHEBYSHEV appreciated with the utmost clarity the role of the

notion of random variable; he developed a new

method of the proof of limit theorems, namely the

method of moments which was perfected later by

MARKOV who introduced also a fundamentally new concept,

namely a scheme of dependent variables

which form a “Markov chain” .

An unexpected step in finding general conditions for the “de Moivre–

Laplace theorem” to hold was made by

LYAPUNOV who elaborated the method of characteristic

functions that allowed him to prove the “Central

Limit Theorem” under assumption that the

summands are independent and their moments of

order 2 + δ, δ > 0, are finite.
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In WESTERN EUROPE in the latter half of the XIX

century, the interest in the theory of probability began to grow

rapidly thanks to discovering of its profound connections with

pure mathematics,

statistical physics,

and mathematical statistics

which began to develop quickly at that time.
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Let us cite just a few names:

Henri Poincaré

(1854–1912)

recurrent motions in dynamic systems

Hugo Gyldén

(1841–1896)

problems of stability of planets and the

probabilistic number theory

James Clerk Maxwell

(1831–1879)

Maxwell’s distribution for molecular

velocities

Ludwig Boltzmann

(1844–1906)

time averages and ergodicity

hypothesis

Josiah Willard Gibbs

(1839–1903)

notion of an ensemble and the “Gibbs

distribution”
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The following discoveries were of a great importance for all the

subsequent development of probability theory as well as for the

deeper understanding of the role of probabilistic approaches and

concepts:

• a phenomenon discovered in 1827 by Robert Brown (1773–

1858) and named afterwards a ‘Brownian motion’.

Qualitative explanation and quantitative description of the Brownian

motion were proposed later on by Albert Einstein (1879–1955) and

Marian Smoluchowski (1872–1917).

• a phenomenon of radioactive decay, discovered in 1896 by

Antoine-Henri Becquerel (1852–1908) when investigating

the properties of uranium.

This phenomenon found its explanation in the framework of

quantum mechanics, whose creation relates to 1920es.
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FOURTH PERIOD (the beginning and middle of the XX century)

Connections of probability theory with pure mathematics which were

revealed by the end of XIX century, led to the setup—by David

Hilbert (1862–1943), in his programming lecture on 8 August 1900

at the Second Mathematical Congress in Paris—of a problem of

MATHEMATIZATION of Probability Theory.

Among the well-known problems launched by Hilbert, the sixth ∗ was

formulated as the problem of

axiomatization of those physical disciplines in which

mathematics plays a dominating role.

Among such disciplines D. Hilbert ranked

probability theory and mechanics.

∗
The first problem concerned the continuum hypothesis.
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The fourth period in the history of the coming-to-be of probability

theory is a period of creation of its logical grounds and of its

becoming a mathematical discipline.

Shortly after the lecture of D. Hilbert, some attempts to construct

the mathematical theory of probability using elements of the theory

of sets and the theory of measure were made.
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In 1904 R. Lämmel, to describe the set of outcomes, turned to

the theory of sets, but the notion of probability remained on

intuitive level and was associated with volume, area, length, ... .

In 1907 U. Broggi, in his thesis advised by D. Hilbert, appealed

to the Borel–Lebesgue theory of measure, but the definition of

the notion itself of (finitely additive) probability needed calling for

“relative measures”, “relative frequencies” (in the simplest cases) and

for some artificial limiting procedures (in the general case).

In 1917 S. N. Bernstein proposed a system of axioms based on

the notion of qualitative comparison of events according to

the degree (greater or smaller) of their likelihood. As regard the

numerical value of probability it arose as a derivative notion.

In later 1920s and early 1930s, B. de Finetti developed a very simi-

lar approach, which was based on subjective qualitative judgements

(“knowledge system of a subject”).
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In 1919, R. von Mises proposed the so-called

F R E Q U E N T I S T A P P R O A C H

[also referred to as statistical

or empirical]

to the logical grounds of probability theory, basing on the idea that

probabilistic concepts can be applied only to the so-called

“collectives” , i. e., individual infinite ordered sequences

which have a certain property of “randomness” of their

formation.

Now we came near the main theme of our lecture, a survey of the von

Mises approach to the notion of “randomness” and its subsequent

developments.
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§ 3. Von Mises’ frequentist probabilities

Richard von Mises (19.04.1883–14.07.1953) was an applied math-

ematician, far-famed for his works in mechanics and especially in

hydrodynamics, theory of flights. (In Harvard University he was

professor of aerodynamics and applied mathematics.) His contribu-

tion to formation of grounds of the theory of probability (1919) ∗ is

very important.

Von Mises, first of all, was interested in the applicability of probability

theory to real world phenomena. This is why he considered the

theory of probability as a doctrine of mass phenomena and, conse-

quently, reckoned it as a natural science, discipline which is de-

termined by the specificity of “mass phenomena”. (Compare with

physics, biology, . . . , which have a certain mathematical specificity.)

∗
Grundlagen der Wahrscheinlichkeitsrechnung, Math. Z. 5 (1919), 52–99.
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As a natural science, the doctrine of “mass phenomena” can be

studied by various methods (including mathematical ones), but within

the frame of its subsect. ∗

Von Mises realized that to ground the theory of probability one need

a certain idealizations of the subject; he suggested that the study of

probability is intricately related with the study of random sequences.

More exactly, the scheme adopted by von Mises can be depicted in

the following way.

∗
Those who follows the Kolmogorov axiomatics can think of the theory of
probability as of a mathematical discipline which is a part of a general
theory of sets and functions.
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Given a sample space (“Merkmalraum”) M of points (“labels”), we

assume that we are able to make infinitely many trials which will give

a sequence x = (x1, x2, . . .), where xn is an outcome (with values

in M) in nth trial. Let A be a subset of the phase space M and let

νn(A; (xk)k≤n) =
1

n

n∑

k=1

IA(xk)

be frequency of appearance of an “event” A in n trials which give

the sequence of labels (x1, . . . , xn).
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After Mises, an infinite sequence x = (x1, x2, . . .) is called

a COLLECTIVE,

if the following two postulates are fulfilled:

(A) the limit lim
n→∞ νn(A; (xk)k≤n) (= P (A;x)) exists;

(B) the limit lim
n→∞ νn(A; (x′k)k≤n) (= P (A;x′)) exists for all

subsequences (x′k)k≥1 = (x′1, x
′
2, . . .) which are obtained

from the sequence x = (x1, x2, . . .) by means of any

“admissible” choice of elements x′k = xnk, n1 < n2 < · · · ,
of the sequence x = (x1, x2, . . .).

It is assumed that for all “admissible” sets A and all “admissible”

selection rules the limits P (A;x′) must coincide with the limit P (A;x).
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E X AM P L E of extracting

an admissible subsequence x′

from the sequence x = 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 . . .

One reads the sequence x from

left to right and mark (by 01 )

the “words” 0 1: x = 0 01 01 01 11 01 1 01 0 . . .⇒

The sequence x′ is formed

by figures which go just after

the string 01: x = 0 01 01 01 11 01 1 01 0 . . .⇒

Admissible subsequence is

x′ = 0 0 1 1 0 . . .
41



Another example of an admissible selection rule: the sequence x′ is

composed of elements xi1, xi2, . . . of x whose numbers ik are primes.

In the von Mises approach, the second postulate (B), which is aimed

to reflect the idea of “randomness”, of absence of “regularity” in the

structure of collectives, is of particular importance.

The aforesaid shows that, constructing probability on a sample

space X, von Mises proceed from the assertion that

this probability can be defined only in connection with

existence of collectives which have “random origin”

(according to postulate (B)).
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The postulate (B) of “randomness” provoked the serious criticism

of the whole (frequentist) von Mises approach to the ground of

probability theory, first of all because von Mises did not give a

formal definition of “admissible” selection rules. (To justify the very

existence of collective he referred to the existence of gambling

houses, to impossibility of construction of winning strategies against

the “random” sequences x = (x1, x2, . . .) produced in casinos.)

Somehow or other, the great merit of the von Mises frequentist

theory of probability theory was that postulate (B) formulated by

von Mises stimulated the investigation of the problem: Which of

infinite sequences meet our idea of “randomness”?
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§ 4. STABILITY of FREQUENCIES (or STOCHASTICITY)

As was already mentioned, Mises did not give a formal-logic definition

of a notion of “random” sequence, since he did not specialize the

“admissible rules of choice” (or “admissible place selection”) and thus

it was not clear which subsequences must satisfy the postulate (B).

〈Recall again that, by von Mises, an admissible place selection is a procedure for

selecting a subsequence of a given sequence x = (x1, x2, . . .) in such a way that

the decision to select a term xn does not depend on the value xn.〉

Moreover, some set-theoretic aspects (additivity, countable additivity)

for the “probabilities” P (A, x) were not clarified.

F. Hausdorff in his letter to G. Pólya (January 1920) expressed his

doubt in existence of “collectives” with property of invariance of

frequencies.

44



One of the first who tried to give a logically consistent formulation

of what are “admissible” rules of choice of subsequences and prove

that the class of collectives is nonempty was

A. WALD ∗ : His idea consisted in

constructing “admissible” sequences by means of

functions W = W (x(n)), defined on the chains

x(n) = (x1, . . . , xn), n ≥ 1, assuming that each of

these functions takes one of two values, 1 или 0.

(It is convenient to introduce an “empty” chain x(0) and define the

value W (x(0)) on this chain to be 1 or 0.)

∗
Die Widerspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeits-

rechnung, Ergebnisse eines mathematischen Kolloquiums, 8, 38–72; 1937 .
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Construction of a subsequence which is

“W -ADMISSIBLE” after WALD:

if W (x(0)) = 1, then x1 is included in the subsequence,

if W (x(0)) = 0, then x1 is not included;

W (x(1)) ≡W (x1);

if W (x1) = 1, then x2 is included in the subsequence,

if W (x1) = 0, then x2 is not included;

. . . . . . . . .

That is,

the “admissible” (or “W -admissible”) sequence is

xn(1), xn(2), . . . where n(1) = min{k ≥ 0: W (x(k)) = 1},

n(2) = min{k > n(1) : W (x(k)) = 1},

. . .
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The basic result of A. Wald is a proof of the NONEMPTINESS

of the class of “collectives” . Namely,

Let S be an arbitrary countable system of admissible

rules each of which is determined by its own collection

of functions W . Then there exist infinitely many

sequences which satisfy postulates (A) и (B).

!
However, one cannot guarantee that the limiting set

functions P (A;x) are countably additive, and without this

property one cannot consider some important questions,

for example, the question whether the law of the iterated

logarithm holds.

The analysis of Wald’s admissible sequences shows that they can

be sufficiently “regular” and not sufficiently disorderly though our

intuition suggests that “random” sequences are sufficiently disordered.
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In 1940 Alonzo Church (“On a concept of a random sequence”), one of

creators of the theory of algorithms, launched an idea that subse-

quences to be included in a collective should be selected effectively.

Thus he suggested that the methods of choosing a subsequence

should be restricted to those we can actually perform. For the

realization of this idea, he proposed to attract the newly-formulated

concept of recursiveness. That concept, according to the well-known

Church theses, was meant as a mathematically precise formulation

of the algorithm ∗ computability.

∗
“An ALGORITHM is an finite sequence of instructions, an explicit, step-
by-step procedure for solving a problem, often used for calculation and data
processing. It is formally a type of effective method in which a list of well-
defined series of successive states, eventually terminating in an end-state, is
defined. A function is called algorithmically computable if there exists an
algorithm which computes it..
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The accurate definition of the notion ‘computable function’ was

given by A. Church (1936) who proposed to identify the computable

function having natural arguments and values with the notion ‘general

recursive function’. (He gave also first example of the noncomputable

function.) In 1936, E. Post and A. Turing gave the first specification

of the notion ‘algorithm’ using the terms of the idealized computer

machines. The most general definition of the notion of algorithm

was proposed in 1953 by A.N. Kolmogorov. He proved that this

very general definition is reduced to an algorithm of calculation of

values of a partially recursive function.

Examples of algorithms: rules of addition, subtraction, multiplication,

long division. A prototypical example of an “algorithm” is Euclid’s

algorithm of determining the greatest common divisor of two integers

which are > 1. Other examples are dynamic programming and linear

programming algorithms.
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Since the class of algorithm is countable, the class of computable

functions is also countable and, consequently, the class R(MWCh) of

sequences which are random after Mises–Wald–Church is nonempty:

R(MWCh) 6= ∅.

Unfortunately, the class R(MWCh) turned out to be still too wide:

J. Ville (1939) constructed a sequence which is random according

to the Mises–Wald–Church definition but has too much regularity

to be called random. For example, for this sequence the law of

iterated logarithm is not fulfilled, although this law is natural for

random sequences.

In 1966 D. Loveland noticed that the class R(MWCh) of sequences

which are “random” after Mises–Wald–Church contains sequences

which, after a certain computable permutation of their entries, are

no longer in the class R(MWCh).
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Taking into account these circumstances, Kolmogorov

in 1963 proposed

a narrowing of the class R(MWCh) at

the expense of enlargement of the set of

“admissible selection rules” (tests) which

satisfy the von Mises postulate (B). ∗

∗
Note that D. Loveland in 1966 came to the same construction.
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The Church’s subsequences (obtained by means of one or another

computable function) were of the form

xn(1), xn(2), . . . where n(i) < n(j) for i < j,

while the Kolmogorov admissible (generalized) subsequences

(obtained by means of two computable functions ψ and ϕ) were of

the form

xϕ(1), xϕ(2), . . . where ϕ(i) 6= ϕ(j), if i 6= j. (ϕ)

The Kolmogorov procedure consists in two steps: first one construct

(by means of a computable function ψ) a generalized sequence

xψ(1), xψ(2), . . . (with ψ(i) 6= ψ(j), if i 6= j), (ψ)

then from this sequence one extracts (by means of a computable

function ϕ, this latter procedure repeats the Church one) a subse-

quence (ϕ).
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The class R(K) obtained in such a way satisfies

R(K) ⊂ R(MWCh).

Unfortunately, this class R(K) also turned out too wide to be taken

as a “class R(?)” of truly “random” sequences. The cause is that

in the class R(K) there exist sequences in each initial segment of

which the number of units exceeds the number of zeroes, the fact

contradicting ∗ both

• our intuition (about “uniformity” of appearance of units and

zeroes in “random” sequences obtained in the symmetrical

Bernoulli scheme) and

• a law of probability theory valid for this scheme bearing the

name of “recurrency law”.

∗
Exceeding of the number of units over the number of zeroes should correspond
to the case p > 1/2 in the Bernoulli scheme with probability of “success” equal
to p; as is well known, in this case the random walk is nonrecurrent.
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Thus, we have the chain of inclusions

R(?) ⊂ R(K) ⊂ R(MWCh)

(R(?) is a class of “truly random” sequences obtained by the von

Mises “admissible” selection rules).

The results stated above exhaust in the main the progress obtained

in the way of constructing sequences with stability of frequencies.

It is worth emphasizing that

a truly random class R(?) of “admissible” sequences

with stability of frequencies, for which the main laws of

probability theory would remain true,

IS NOT DETERMINED YET.
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§ 5. TYPICALITY (belonging to a set with effective measure 1)

To describe a different (namely, “typical”) approach to the notion of

randomness, which was initiated by P. Martin-Löf (1966), recall

first the Borel strong law of large numbers.

Let Ω = [0,1). Denote by B the Borel system of subsets of Ω and

by P the Lebesgue measure on [0,1).

Consider a binary record x = 0.x1x2 . . . of x ∈ Ω (with infinitely

many zeroes) and define random variables ξ1(x), ξ2(x), . . . by letting

ξn(x) = xn. For any n ≥ 1 and all b1, b2, . . . taking values 0 and 1,

{ω : ξ1(x) = b1, . . . , ξn(x) = bn} =

{ n∑

i=1

bi
2i

≤ x <
n∑

i=1

bi
2i

+
1

2n

}

,

so the measure P of this set equals 1/2n. Thus, ξ1(x), ξ2(x), . . . are

i.i.d. random variables with P(ξi = 0) = P(ξi = 1) = 1/2.
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BOREL STRONG LAW OF LARGE NUMBERS says that

almost all numbers x = 0.x1x2 . . . from the interval [0,1)

are normal in a sense that with probability 1 the part

of zeroes (and the part of units) in a binary record of x

tends to 1/2, i.e., for “most” x’s (more exactly, P-a.s.)

1

n

n∑

k=1

I(xk = 1) −→ 1

2
. (∗)

Thus, the P-measure of x = 0.x1x2 . . . such that the limit

lim
n→∞

1

n

n∑

k=1

I(xk = 1)

either does not exist, or does not equal 1/2, is 0.
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Such P-null sets are called negligible. Our intuition suggests that

if, say, a set U ⊆ Ω is negligible (i.e., P(U) = 0),

then all elements x = 0.x1x2 . . . of this set (in other

words, all sequences (x1, x2, . . .)) should be proclaimed

“NONTYPICAL” (i.e., not belonging to “majority”),

since the property (∗) fails.

But such sets U of “untypical” x’s are, generally speaking, “large in

number” and therefore

the set of “untypical” x’s should be taken as a maximal set

which contains all sets U with P(U) = 0; in other words,

set of “nontypicality” =
⋃
U

where the sum (which is, generally speaking, not countable)

is taken over all U such that P(U) = 0.
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HOWEVER, it is well known that it can occur that the P-measure

of the set
⋃
U is well-defined and P(

⋃
U) = 1. Thus,

the set of all “untypical” x = 0.x1x2 . . . (in other

words, of sequences (x1, x2, . . .))—which seems to be

a natural candidate for the nomination as “a set of

‘nonrandomness’ ”—has the measure 1.

It is clear that the set of all “typical” x’s is
⋂
U (=

⋃
U) so that

the set of “typical” x’s, which we want to consider

as the set of “randomness”, is generally P-null—the

fact which contradicts both the strong law of large

numbers and the common sense.
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A way to overcome the difficulty of defining “typical” sequences

which we would like to proclaim “random” was proposed, as we

already said, by P. Martin-Löf who specialized the notion of a

‘negligible set’

(i.e., a set with the measure 0); namely, he introduced (in an

algorithmic way) a new notion of

‘EFFECTIVELY negligible set’.

It is this notion that allowed the natural definition of “typical sequences”

which we want to declare “random”.

Recall that in the theory of measure a set U is called negligible or

P-null, if P(U) = 0. In the case of the space Ω of sequences it is

convenient to use the following (equivalent) definition of negligible

sets.
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Ω := {x : x = x1x2 . . .} is a set of ALL binary (i.e., xi = 0 or 1)

sequences (or infinite words).

Ξ := {ξ : ξ = x1x2 . . . x|ξ|} is a set of FINITE binary words ξ,

with lengths |ξ| taking values in {1,2, . . .}.
Ωξ is a set of infinite binary words with initial fragment ξ ∈ Ξ;

in other words, Ωξ is a cylindrical set with the “base” ξ.

DEFINITION I. A set U ⊆ Ω is called

negligible (with respect to the measure P),

if for any integer m ≥ 1 one can find a sequence ξ1, ξ2, . . . of

binary words (from Ξ) such that

U ⊆
⋃

n
Ωξn, where

∑

n
P(Ωξn) =

∑

n
2−|ξn| <

1

m
.
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REMARK.

Each one-point set U , which consists of a single

sequence x ∈ Ω, is evidently negligible, since the

initial fragments of length n have probability 2−n

and it suffices to choose an n such that 2−n < 1/m.
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The following notion of effectively negligible set, which is needed

for our purposes, specializes the above definition of a negligible set.

DEFINITION II. A set U∗ ⊆ Ω is called

EFFECTIVELY negligible

(with respect to the measure P),

if for any integer m ≥ 1 there exists an m-effectively

computable sequence ξ∗1, ξ
∗
2, . . . of binary words (from Ξ) such

that

U∗ ⊆
⋃

n
Ωξ∗n, where

∑

n
P(Ωξ∗n) =

∑

n
2−|ξ∗n| <

1

m
.
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In Definition II, the qualifier

“m-effectively computable”

is defined by means of ALGORITHMIC notions :

We say that a sequence of binary words

• ξ1, ξ2, . . . is algorithmically computable,

if there exists an algorithm which calculates

each ξn by its number n.

• ξ∗1, ξ
∗
2, . . . is m-effectively computable,

if there exists an algorithm which, starting

from a number m, elaborates another

algorithm (program) which creates an

algorithmically computable sequence.
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DEFINITION I. A set U ⊆ Ω is called

negligible (w.r.t. the measure P),

if for any integer m ≥ 1 one can find a sequence ξ1, ξ2, . . . of

binary words (from Ξ) such that

U ⊆
⋃

n
Ωξn, where

∑

n
P(Ωξn) =

∑

n
2−|ξn| <

1

m
.

DEFINITION II. A set U∗ ⊆ Ω is called

EFFECTIVELY negligible (w.r.t. the measure P),

if for any integer m ≥ 1 there exists an m-effectively computable

sequence ξ∗1, ξ
∗
2, . . . of binary words (from Ξ) such that

U∗ ⊆
⋃

n
Ωξ∗n, where

∑

n
P(Ωξ∗n) =

∑

n
2−|ξ∗n| <

1

m
.
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The importance of the notion of an effectively negligible set is

revealed by the following result by P. Martin-Löf:

ТЕОРЕМА. There exists an effectively negligible set

which contains ALL effectively negligible sets.

Thus, if the completion of an effectively negligible set is said to be

‘effectively large’, then the intersection of all effectively large sets

is again an effectively large set and has the (effective) measure 1.

This is the above intersection that one proclaims to be a set of

“TYPICAL” sequences, denote by R(T) and calls a set of

RANDOM SEQUENCES after MARTIN-LÖF.
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It is worth our attention to observe that

for “typical” sequences (i.e., the sequences of the class

R(T)) the basic laws of probability theory, including the

law of iterated logarithm, are fulfilled.

To the chain of inclusions

R(?) ⊆ R(K) ⊂ R(MWCh),

the class R(T) can be incorporated in the following way:

R(?) ⊆ R(T) ⊆ R(K) ⊂ R(MWCh)
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§6. SEQUENCES with COMPLEX STRUCTURE

(CHAOTIC SEQUENCES)

The sequences

(II10): 1 1 1 1 . . .1 1 и (III10): 1010 . . .10,

considered above have very simple structure. This simplicity, which

results in possibility to describe them easily, justifies the fact that

we are inclined to regard these sequences as nonrandom.

On the other hand, one cannot say that the sequence

(I10): 01 1 1010 010

has simple structure, it is not easy to describe, thus we are inclined

to regard it as “random”.

To describe the classes R(MWCh), and R(K), one focuses on the

structure of algorithms of creating the subsequences.
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The KOLMOGOROV APPROACH, initiated by him in 1960s,

focuses on

the complexity of the structure of SEQUENCES ITSELVES,

either finite or infinite. Kolmogorov introduced certain numerical

characteristic (called now the ‘Kolmogorov complexity’) such that

•
the complexity of a finite sequence is measured by the length

of its shortest “description”;

• an infinite sequence is proclaimed to be chaotic (as a

synonym of “randomness”), if the complexities of its initial

strings grows “as fast as possible”.

Now let us turn to formal definitions, including the definition of how

one understand a “description”.
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Each of sequences (I10), (II10), (III10) considered above can be

described in words

in DIFFERENT WAYS.

For example, one can say that

• “the word (III10): 1 0 1 0 1 0 1 0 1 0 consists of 10 letters,

with 1 at odd positions and 0 at even positions”.

However, it is the same as to say that

• “the word (III10): 1 0 1 0 1 0 1 0 1 0 consists of 10 alter-

nating letters 0 and 1, starting with 1”.
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These descriptions have different lengths, however it is clear that

if one wants to know how to find the shortest then one should

reduce all these descriptions to a single standard

so that their lengths can be measured in a unified way.

The most natural—and the most simple—way of such a “standardized”

description consists in

coding them in a binary alphabet,

i.e., to represent them as binary words.

Thus we shall assume that

both the words x which we are interested in

and their coded descriptions y belong to Ξ
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For a word y ∈ Ξ, its complexity is, by definition, the quantity

Comp(y) ≡ min{|x| : x is a description of y}.

It is clear that there may be various “ways of description” (either in

prose or in verse. . . ). So, it should be determined: what in one or

another case is understood under a “way of description”?

An approach consists in

considering the so-called algorithmically computable

mappings f : Ξ → Ξ as “ways of description”.

(We do not cite here all necessary definitions from mathematical logic—see the

relevant entries in [Math. Encycl., т. 1] and bibliography therein.)

71



To a first approximation, the situation may be thought of as follows:

a “machine”, starting from consequently arriving values

y = (y1, y2, . . .), “gives out” certain values f(y) which

form a sequence of zeroes and units.

A binary word x is said to be a

“description” (“f-description”) of a finite word y,

if y is the initial fragment of the (finite or infinite)

sequence f(x):

x = · · · · · · −→ MACHINE −→ f(x) = 0111001
︸ ︷︷ ︸

y

. . .
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DEFINITION 1. Complexity of a word y for a given

algorithmically computable mapping f is a number

Kf(y) = min{|x| : x is f-description of y},

where |x| is the length of the binary word x; the minimum of

the empty set is assumed to be +∞.

DEFINITION 2. An algorithmically computable mapping f

is said to be optimal, if for any algorithmically computable

mapping g there exists a constant C = C(g) such that

Kf(y) = Kg(y) + C for all binary words y.

Kolmogorov and Solomonoff showed that for some important families F of mappings

f such mappings f do exist.
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DEFINITION 3. Entropy is complexity for an arbitrary

optimal algorithmically computable mapping.

Thus, the entropy depends on an optimal mapping. For each optimal

mapping there exists its entropy. At first sight this may seem to be

an unfavorable circumstance, however any two optimal entropies

K1(y) and K2(y) differ only by a constant:

|K1(y) −K2(y)| < C.

As we shall see from what follows, to define chaotic sequences it

suffices to choose лишь какую-то одну optimal entropy, let us call

it K(y).
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Note that for the identical mapping g(y) = y the complexity of a

word y is evidently equal to its length. Thus, K(y) ≤ |y| + C and if

y = (y1, . . . , yn), then

K(y1, . . . , yn) ≤ n+ C.

DEFINITION 4. A sequence y = (y1, . . . , yn) is called chaotic

if there exists a constant C such that for any n

K(y1, . . . , yn) > n− C.

This definition shows that the property of a sequence to be chaotic

does not depend on a concrete choice of optimal entropy.
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In 1973, L. Levin proposed a specification of the class F of algorithm-

ically computable mappings and studied the corresponding notion

of entropy (which is called monotone).

Simultaneously, the same was done by С. P. Schnorr (1973). Their

results (taking account of the specifications of the class F) lead to

the following important theorem.

THEOREM (Levin–Schnorr). The class R(C) of chaotic

sequences coincides with the class R(T) of typical sequences:

R(C) = R(T) .
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Thus, if we denote • by R(T) the set of “typical” sequences and

• by R(C) the set of “chaotic” sequences,

then the following diagram hold:

chaotic randomness,
or

complex structure

frequency-stability
randomness
after Kolmogorov→ →

R(?) ⊆ R(C) = R(T) ⊆ R(K) ⊂ R(MWCh)

→ →

typical
randomness
after Martin-Löf

frequency-stability
randomness
after Mises–Wald–Church

Note that for chaotic-typical random sequences (i.e., sequences

which belong to the class R(C) = R(T)) the essential laws of

probability theory are valid.
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§ 7. NONPREDICTABILITY

As was already noted, Mises did not give an accurate definition

of a notion of “random sequences”, and justified their existence by

referring to the fact that such sequences are at disposal of casinos.

A player which comes to casino, is offered to guess entries of a

“random sequence” and gamble on. The casino is convinced of

“unpredictability” of such sequences, which does not allow the player

to create a strategy which would ruin the gambling house.

J. Ville appears to be the first to use (in a small monograph “Étude

critique de la notion de collectif”, Gauthier-Villars, Paris, 1939) the

game interpretation to define “unpredictability” as a synonym of

“randomness” of a sequence.
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Essentially the main objection of Ville to von Mises’ notion of
collective was the following ∗:

(a) Given any countable set of place selection function it is possible
to construct a sequence x = (x1, x2, . . .) which is a Kollektiv with the
property that, for all except finitely many n,

∑

k≤n xk ≥ n/2 which is
atypical in view of the law of the iterated logarithm (so x is not a
sufficiently disorderly sequence).

(b) Von Mises’ formalization of gambling strategies (for defending
the notion of Kollektiv) as admissible place selection is not perfect,
since one may devise a strategy (a MARTINGALE) which makes
unlimited amounts of money of a sequence of the type constructed
in (a), whereas there is no place selection which does this. So,
Kollektives are not completely adequate models of random phenomena.

∗
M. van Lambalgen, Randomness and foundations of probability: von
Mises axiomatization of random sequences, Probability, statistics and
game theory, Institute for Mathematical Statistics, 1996.
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Modern views on a “game” approach to the notion of “randomness”

via the notion of “unpredictability” can be summarized, after [V.A.Us-

pensky, The four algorithmic physiognomies of randomness], as follows.

Let a player coming to casino have a certain capital V (0). The

casino also possesses a certain capital W (0), whose size is unknown

to the player. Let the sequence observed by the player be of the

form x = (x1, x2, . . .), where xi = ±1. Before the kth step the player

choose the size of a stake γk = γk(x1, . . . , xk−1), then his gain/loss

at the kth step will be equal to γkxk, and the total capital will equal

V (k) = V (0) +
k∑

i=1

γixi.

Certainly, it is assumed that the stake γk at each time k cannot

exceed the capital V (k − 1), i.e., γk is subject to the restriction

γk ≤ V (k − 1). The player has a right to take γk = 0, which means

that he does not stake at all. In this case the player capital remains

unchanged.
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By definition, the player wins, if

sup
k
V (k) = ∞,

i.e., without regard to the capital W in possession of casino, there

comes a time when casino finds itself ruined.

It is important to emphasize that all the strategies (γk) of the

player are supposed computable, i.e. are given by means of a certain

algorithm.

The sequence x = (x1, x2, . . .) is called predictable, if there exists a

winning computable strategy (γk), otherwise the sequence is called

nonpredictable. Denote by R(NP) the class of nonpredictable se-

quences. It is known that

R(T) ⊆ R(NP) ⊂ R(K)

(note that the second inclusion is proper (!)).
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So, we can sum up the state of our knowledge about relations

between different classes R(·) of sequences:

chaotic randomness,
or

complex structure

randomness as
nonpredictability

frequency-stability
randomness
after Mises–Wald–Church→ → →

R(?) ⊆ R(C) = R(T) ⊆ R(NP) ⊂ R(K) ⊂ R(MWCh)
→ →

typical
randomness
after Martin-Löf

frequency-stability
randomness
after Kolmogorov

Note that it is so far unknown whether the equality R(T)
?
= R(NP)

holds. This problem is still waiting to be solved.
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§ 8. AN EXAMPLE

We want to demonstrate now

how the notions of algorithmic theory of probabilities

allows one to give new proofs of some results of the

classical theory of probabilities.

As an example, we take

the STRONG LAW OF LARGE NUMBERS:

Sn(x)

n
→ 1

2
, where x = (x1, x2, . . .), xi = 0 or 1

The ideas of the algorithmic proof (V. Vovk, A. Shen) are the

following.
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Take the initial segment x(n) = (x1, . . . , xn), and

let pn = 1
n(x1 + · · · + xn) be a frequency of units in this segment.

From Shannon we know that “entropy per letter” in x(n)
[i.e., quantity of bits necessary for encoding one letter in x(n)]

is about H(pn) ≡ −pn log2 pn − qn log2 qn .

So, we need nH(pn) bits to encode x(n).

However, to encode or decode x(n), we must know also probability pn.
Hence the full code for x(n) includes also the number pn, which is a

rational number whose numerator and denominator do not exceed n.
So, its encoding requires not more than O(logn) bits.

Therefore, the initial segment x(n) of any sequence (x0, x1, . . .) con-

tains not more than

nH(pn) +O(logn) bits of information.
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If the sequence (x0, x1, . . .) is chaotic, then, by Kolmogorov–Levin,

the monotone entropy (complexity) of its segment of the length n

must be n+O(1). So,

H(pn) =
n+O(1) +O(logn)

n
= 1 +O

(
logn

n

)

−→ 1, n→ ∞,

and therefore, pn → 1/2 (because H(p) = 1 + const(p − 1/2)2 +

o((p− 1/2)2) near p = 1/2, so that pn − 1/2 = O(
√

n−1 logn)).

Summary: for all chaotic (=typical) sequences (x0, x1, . . .)

pn =
x1 + · · · + xn

n
−→ 1

2
.

These sequences form a set of measure 1, so the classical strong

law of large numbers is proved.

85


